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Potential landscapes and induced charges near metallic islands in three dimensions

A. Weichselbaum and S. E. Ulloa
Department of Physics and Astronomy, and Nanoscale and Quantum Phenomena Institute, Ohio University,
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~Received 23 June 2003; published 25 November 2003!

We calculate electrostatic potential landscapes for an external probe charge in the presence of a set of
metallic islands. Our numerical calculation in three dimensions~3D! uses an efficient grid relaxation technique.
The well-known relaxation algorithm for solving the Poisson equation in two dimensions is generalized to 3D.
In addition, all charges on the system, free as well as induced charges, are determined accurately and self-
consistently to satisfy the desired boundary conditions. This allows the straightforward calculation of the
potential on the outer boundary using the free space electrostatic Green’s function, as well as the calculation of
the entire capacitance matrix of the system. Physically interesting examples of nanoscale systems are presented
and analyzed.
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I. INTRODUCTION

There is a need to precisely know the electrostatic la
scape experienced by electrons in ever smaller structu
down to the scale of scanning tunnelling microprobes~STM!
and single electron devices. The presence of conduc
leads for manipulating and measuring local potentials in
ences the quantum mechanical behavior of electrons
highly nontrivial manner. In polarizable media, for examp
charged ‘‘conglomerates’’ which include free as well as p
larization charges in the neighborhood, behave as quas
ticles which can live for a comparatively long time and i
teract with the conducting leads via Coulomb interactio
Knowledge of the potential landscape describing this in
action for the case of a quasiparticle is an interesting
important element in the better understanding of these
tems. Electrons in single-electron transistors@1#, or moving
in the neighborhood of lithographically defined gate arran
ments@2#, or tunnelling through STM scanning tips are bu
few examples of the pervasiveness of electrostatic poten
in realistic structures.

The solution of the Laplace or Poisson equation to obt
electrostatic potential landscapes is a well defined bound
value problem, typically requiring the discretization of spa
on a convenient grid. Relaxation techniques are well kno
@3–5# and widely used in the solution of these problems,
they provide convenient and efficient algorithms@6#. For di-
mensions lower than three, simple second order algorith
are used together with common speedup features suc
successive over-relaxation~SOR! and Gauss-Seidel~GS! it-
eration schemes@3,4#. In three dimensions~3D!, however,
due to the poor scaling with grid dimensions, more efficie
routines are desirable. In this context a generalizedO(h6)
algorithm for 3D is presented in this paper, and used to
culate the potential landscape of several physical system
interest, as those mentioned above.

The boundary conditions most easily built into relaxati
algorithms are fixed voltage surfaces, with the volta
known and provided by an external battery, for examp
This does not apply, however, to cases with afloatingpoten-
tial, such as metallic islands which are isolated from
1063-651X/2003/68~5!/056707~5!/$20.00 68 0567
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environment ~like metallic quantum dots!, or for open
boundary problems. In the case of isolated islands, the v
of the potential at a metallic boundary, even though const
is not known. On the other hand, the overall charge on
island is determined at the outset and can be considered
known. The solution to the problem taken here is that on
one has access to the linear relationship between the ch
on the island and the island potential derived from the rel
ation algorithm, one can invert this relationship and calcul
the potential with every relaxation cycle such that the ove
charge is maintained at a fixed value, e.g., zero for an ove
neutral island. Incorporation of this idea in the iteration pr
cedure yields the appropriate floating potentials, as we
show.

Note moreover that the outer boundary is open in gen
in most nanosized geometries. If the size of the calcula
cell could be chosen large enough, of course, one could
sume that the potential would drop to zero there; howev
this is operationally forbidden by the vast number of g
points needed in that case. The only feasible way is to de
mine the nonuniform potential on the outer boundary se
consistently within the algorithm. The approach taken in t
paper is that the knowledge of the total charge distribut
~externaland induced charges! allows for the calculation of
the potential on the outer boundary via the standard fr
space electrostatic Green’s function, 1/4pr . This is a
straightforward if computationally expensive procedu
which can be speeded up remarkably by tabulating the
verse distances on the grid, but yields physically we
behaved asymptotics in all cases, as we will see. We sh
also emphasize that once the charges and potentials in
system are known, one can easily evaluate the capacit
matrix for the geometries of interest, regardless of the sy
metries of the arrangement.

The remainder of the paper describes the algorithm
detail in Sec. I, while Sec. II illustrates its use in seve
physically relevant examples.

II. ALGORITHM

Taking the standard Taylor expansion of a smooth fu
tion f (x,y,z) around each grid point, one defines thecenter
©2003 The American Physical Society07-1
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averageand thesquare averageas follows ~assuming uni-
form grid spacingh in all three dimensions!

^ f &C[
1

6 S (
i , j ,k

NN

f i jk D 5 f (000)1
h2

6
¹W 2f 1

h4

72
~ f (400)1 f (040)

1 f (004)!1O~h6!, ~1a!

^ f &S[
1

8 S (
i , j ,k

TNN

f i jk D 5 f (000)1
h2

2
¹W 2f 1

h4

24
~ f (400)1 f (040)

1 f (004)!1
h4

4
~ f (220)1 f (202)1 f (022)!1O~h6!, ~1b!

where~T!NN stands for~third! nearest neighbors and

f (rst)[
] r

]xr

]s

]ys

] t

]zt
f ~ i , j ,k!, ~2a!

f i[ f i jk[ f ~ i , j ,k![ f ~ ih, jh,kh!, ~2b!

with i , j , k and r , s, t being integers. The averages in Eq
~1! are shown graphically in Fig. 1. Note that the odd-ord
derivatives in Eqs.~1! cancel due to the symmetric comb
nations around the grid points included in the averages. A
note thatsecond~or next! nearest neighbors are considered
the ‘‘checkered lattice’’ sweeps of the points making t
simple cubic grid.~The relaxation sweeps are done sequ
tially over the face-centered cubic array of neighbors wh
form effectively a dual lattice.!

Taking the linear combination of the averages of Eqs.~1a!
and ~1b!

^̂ f &&[a^ f &C1~12a!^ f &S , ~3!

then witha[a3D56/7 theoverall averagebecomes

^̂ f &&3D5 f i1
3

14 h2¹W 2f i1
1

56 h4¹W 2¹W 2f i1O~h6!. ~4!

Since we are solving for the Poisson equation

¹W 2f 52g, ~5!

Eq. ~4! can be rewritten as

f i5 ^̂ f &&3D1 3
28 h2~gi1^g&C!1O~h6!, ~6!

FIG. 1. Visualization of averages taken on the grid: avera
^ f &C as in Eq.~1a! is over nearest neighbors~NN!; averagê f &S as
in Eq. ~1b! is over third nearest neighbors~TNN!. The grid points
included in the sum are shown as filled symbols; solid lines join
these have length of two grid spacings, 2h.
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where ^g&C is the center averagefor the source termat a
given grid point. Equation~6!, together with Eq.~4!, serves
as the basis for the iterative scheme: the potentialf is relaxed
to its minimumconsidering external sourcesg and the poten-
tial of the ~third and! nearest neighbor sites through the li
ear three-dimensional average. In order to calculate cha
on the grid, Eq.~4! is employed again and gives a straigh
forward way for calculatingreal ~i.e., free! and induced
charges on the grid on an equal footing. Thus using Poiss
Eq. ~5!, the charge contribution of each grid point can
calculated as follows

qi[h3 gi5h~2h2¹W 2f i!5 14
3 h@ f i2 ^̂ f &&3D1O~h4!#. ~7!

For convenience, throughout the paper we adopt the
lowing convention on units. The charge of an electrone is set
to 1; therefore the electric potential is the same as the po
tial energy. The Coulomb energy is written in units of eV
E5q1@e#q2@e#/(4pr ) which straightforwardly implies a
unit for the distance of@r #518.1 nm. Summarizing, the
units chosen are

@charge#5e; @energy#5eV; @distance#518.1 nm. ~8!

Therefore, taking these units, brings one naturally into
realm of nanostructures.

A. Successive over relaxation and iteration scheme

The general method for SOR is described for 2D in Re
@3,4# for a N3N array, and generalized here to 3D as giv
by

f i
( i 11)5 f i

( i )1v~ f i
(new)2 f i

( i )!, ~9a!

where

v5
2

11p/min~Nx ,Ny ,Nz!
, ~9b!

Nj is the grid size in thej th direction, andf i
(new) is calcu-

lated according to Eq.~6!. The SOR parameterv is in the
range 1,v,2 as required for the algorithm to converg
The basic idea behindv is that if one is heading in theright
direction ~e.g., towards the solution!, why not go a bit fur-
ther. An v too large (v.2), however, results in instability
of the algorithm and the relaxation process overshoots
diverges. Equation~9b! was tested for differentNx , Ny , and
Nz values and it was indeed this specific combination t
gave the optimal value forv ~note that the window for a
goodv is quite narrow in general!. The specific structure o
Eq. ~9b! can be intuitively understood as follows: the SO
algorithm introduces perturbations in the system that pro
gate during the relaxation cycles and eventually die out if
grid is large enough; however, for finite grid sizes, the p
turbations are reflected at the boundaries and so they in
fere and pile up. In this sense, the minimum extension wit
the three grid dimensions constrains the optimal magnit
of v, consistent with Eq.~9b!.

For further optimization of the algorithm, the Gaus
Seidel iteration scheme was adopted, as well as the alte
ing relaxation on the two checkerboard like subgrids tha
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POTENTIAL LANDSCAPES AND INDUCED CHARGES . . . PHYSICAL REVIEW E 68, 056707 ~2003!
sum span the whole grid@3,4#. The inverse distances be-
tween the grid points were mapped into a table, such that
calculation of the potential in the grid is sped up remarkab
According to Coalson@6#, multigrid methods can be applie
to account for the slowly converging long wavelength p
tions of the solution. This was not done here, since the va
tion of the potential on the isolated islands and especially
calculation of the outer boundary already introduced lon
range correlations over the grid that presumably made
algorithm converge faster in our case.

A note about efficiency: As we use a successive ov
relaxation method to iterate the potential on the grid, the to
relaxation time for this in 2D is proportional to;n3/2, where
n is the total number of grid points@4#, and is thus clearly
comparable to algorithms like conjugate gradient. Also n
that SOR has still known improvements that may also
implemented and would thus make this algorithm superio
the former@4#. Our relaxation over the bipartite lattices com
posing the simple cubic three-dimensional grid preserves
spirit of the two-dimensional algorithms, but obtains an a
curacy ofO(h6), as discussed above.

B. Open outer boundary

Equation ~7! gives a consistent higher order recipe f
calculating the overall charge distribution, including induc
as well as the external~free! charges@7,8#, given via the
source termg in the Poisson equation~5!. Starting with an
~arbitrary! initial constant potential on the outer bounda
~OB!, these values are updated every time the interior of
grid has relaxed down to a certain accuracy level«,

Vi
OB5

1

4p (
qjÞ0

qj~d21! ij ,

and employs the tabulated inverse distance values for
grid points.

III. DISCUSSION

In the following, several applications of the algorithm a
presented. We start with a simple test example, and fol
with the analysis of more complex geometries.

A. Example: Point charge near a conducting island

As an instructive example and as a test case for the a
rithm, a 323323132 grid was setup with one square met
lic island in the lower region, while an external charge
placed at different positions away from the island surfa
and directly over its center~see inset of Fig. 2!. The total
dimensions of the grid in real space were taken to beLx
51 @in units as per Eq.~8!#, and accordinglyLy51 andLz
54.2 for equal grid spacing.

We calculate the interaction potential experienced by
point charge in the presence of the island. The results
shown in Fig. 2. For the case of a neutral island, close to
surface, the potential approaches that produced by the im
charge of an infinite plane (;1/r ), while further away from
the island, the potential approaches asymptotically the fo
05670
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of an induced quadrupole interaction potential (;1/r 6) @9#.
The calculation was done also for a grounded island.

this case, one obtains the limit of an infinite plane at sh
distances (;1/r ), while further away from the island the
dependence weakens to;1/r 2 as expected@10#. As a refer-
ence, the interaction potential in the presence of an infin
plane is shown~solid line in Fig. 2!. The finite size of the
island clearly reduces the interaction at large distances. O
all, it is interesting to see that one obtains exactly wha
expected, but more importantly, the algorithm already giv
useful results for rather small grid dimensions.

B. Example: Point charge interacting with an array of islands

Lithographically, an array of conducting islands can
separated from a two-dimensional electron gas by an insu
ing layer, as in the experiments with spatially modulat
two-dimensional electron gases in semiconductors@2#. Con-
sidering the electron gas as a Fermi liquid, the interaction
a single electron~or single quasiparticle! with the conducting
islands nearby is an important element of the physics of
problem since this interaction will clearly modify the dy
namical behavior of the system@1#. Figure 3 shows the
sample geometry used in this example.

With the test charge hovering over the center of one isla
and considering the conducting islands either grounded
isolated~uncharged!, the calculated charge distribution an
the potential in the plane of the islands are shown in Fig
the grounded case can be understood as that of an is
where hopping onto and off the island is allowed via a tu

FIG. 2. Calculated interaction potential energy of a point cha
(q51@e#) with a finite size conducting plane. The grid configur
tion is shown to scale in the inset: the total block size
323323132, indicated by the gray box lines; positions of the po
charge are indicated by the black dots in the inset, a set of locat
vertically away from the metallic plane which is shown at the b
tom by the black line~note that closest point charge to island d
tance is 3h, three grid spacings!. Shown are two configurations
neutral isolated island~filled circles! and grounded island~empty
circles!. Gray lines indicate different power law dependencies}za.
7-3
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neling channel from an external charge reservoir. A f
points should be stressed: first, note that the variations of
potential in the plane of islands in Fig. 4 for the case
isolated islands is about a factor 10larger compared to the
grounded case since the island potential is not fixed. Sec
the isolated islands are indeed neutral within numerical
curacy, the sum over all chargesQtot is zero, within the
accuracy provided by the convergence parameter« ~see
lower two plots in Fig. 4: total induced charge in the plane
the islands5 all positive surface charge1 all negative sur-
face charge.0.44220.442;1027;«). Third, the induced
negative charge in the case of neutral islands is cle
smaller compared to the grounded case, which is intuitiv
clear, since in the neutral case the negative charge nee
be compensated by an equal amount of opposite charge

FIG. 3. Interacting point charge (q511) with an array of four
islands in a plane underneath the point charge: a 64364316 ~box!
cell with open boundaries was setup; its dimensions areLx5Ly

51, Lz516h50.25 @units as per Eq.~8!#. The separation of the
external charge from the island plane is 5h55/6450.078.

FIG. 4. Potential landscape and charge distributionwithin the
plane of islands for the geometry in Fig. 3: the left~right! two
graphs are for the case of neutral~grounded! islands, respectively
Note the quite different scale in the two potentials shown in pl
~a! and~b!. The induced surface charge density is shown in the p
~c! and ~d! @in units as per Eq.~8!#; for better visualization the top
~positive! and bottom~negative! surface charges of the islands a
shown added up in a single plot.
aint
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this charge separation in the island costs energy. There
the interaction with the external charge can be expected t
weaker for the isolated~neutral! islands, as is the case~see
later, Fig. 5!. Also note that in the neutral case the isla
corners exhibit accumulation of induced charges, as
would expect from the sharpness of the island corners.
also interesting to observe that the induced charge never
ceeds the external charge~in absolute value!: at the maxi-
mum, it is just equal and opposite in sign~as for the case of
the infinite plane!.

As the external charge was displaced horizontally a
certain separation above the plane of the island, one ef
tively scans the potential landscapes for different geomet
and different boundary conditions, as shown in Fig. 5. T
isolated~neutral! islands show a clearly weaker modulatio
of the interaction potential. Furthermore, decreasing the
land separation such that the gap between them is ne
closed, reduces most of the central modulation and smo
the potentials, as one would expect, and can be seen by c
paring the upper two graphs in Fig. 5 with the lower two.

C. Mutually induced charge on STM tip

As a final example, the induced charges were calcula
for the typical geometry of a metallic STM tip near a meta
lic array structure with the islands kept neutral; the geome
can be seen in panel~d! of Fig. 6. The parabolically shape
STM tip is maintained at a fixed potential (V51) by an
external source. The potential below the islands is weake
and shielded by the islands@panel~a!#, while on the islands
the potential is constant and is defined there by the constr

s
ts

FIG. 5. Potential landscape of an external charge interac
with the array of islands. The geometry is the same as in Fig
except for the separation between islands. Only the region of
four overlapping island corners is shown. The left two graphs~a!
and~c! are for the case of isolated islands; the right two~b! and~d!
for grounded islands; the upper two graphs are for an island s
ration s of 10h (510 grid spacings), while the lower two graph
are for an island separation of 3h.
7-4
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of neutrality @panel~b!#. Above the islands, in the region o
the tip, the potential landscape (xy slice! has a circular pla-
teau at the position of the tip with a potential ofV51 ~the
potential of the tip! and smoothly decays away from the t

FIG. 6. ~Color online! Potential and charge distribution for
conducting tip at potentialV51 above four isolated~neutral! is-
lands; the distance between the plane of islands and the tip ish.
Panels~a!–~c! showxy slices in the potential distribution. Panel~a!:
potential just under the plane of islands (z524h with respect to
the plane of the islands!; panel~b!: potential right on the plane o
islands (z50h); and panel~c!: potential on a plane above the ti
(z525h). Panel~d! is a contour plot of the charge distribution o
the tip and on the overall neutral islands (Qtot

islands510.2811
(20.281).10210, i.e., nicely converged!. Theextra charge on the
tip due to the presence of the islands is10.181.
P
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@panel~c!#. Panel~d! indicates the charge distribution on th
islands and on the tip; the charge on the tip is positive ov
all: Qtip

0 514.01 is the charge on the portion of the t
shown in theabsenceof the islands, and it gains a bit mor
of charge (10.181) through the interaction with the metall
islands. The island with the tip right on top of it~right rear in
inset! is the most polarized of all. The corner in the center
negativelycharged, while the transition through the whi
region on the island surfaces in panel~d! indicates that the
surface charge switches sign there, and that the outer re
of the islands are positively charged. In addition, the low
island surfaces are also mostly positive, as one would exp
This compensates the negative charge induced by the tip
guarantees the neutrality of the islands~see caption for ex-
plicit numbers!.

IV. SUMMARY

In summary, the electrostatic potential of complex met
lic arrangements were calculated on a three-dimensional
with an O(h6) algorithm. The algorithm presented here is
generalization of the relaxation techniques common in tw
dimensional systems, properly set up to provide accurate
efficient calculations. The approach allows the study of ar
trary geometries and boundary conditions, as well as the s
consistent calculation of free and induced charges. This
formation, in turn, allows the calculation of the capacitan
matrix of the system. Several examples illustrate the relia
ity and usefulness of the algorithm for obtaining potent
landscapes of interest.
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@7# Calculating the external charges~e.g., that of an isolated elec
tron! is not needed explicitly since known, but it serves as
nice self-check of the algorithm. As an example, the cha
distribution around a free electron was calculated, introdu
into the system as ad charge~i.e., a source of 1/h3 on a single
grid point!. With nearest neighbor sites included because of
discreteness of the lattice, the total charge over these 116 grid
.

e
d

e

points correctly gave the overall charge up to numerical pre
sion.

@8# When calculating an artificial charge at the outer boundary
assuming continued constant potential right at the border
sults in the constraint that the sum of charges from all g
points needs to approach zero. This was also nicely fulfilled
to a relative error of 1027, the order of the convergence pa
rameter«.

@9# The quadrupole dependence is obtained because the isla
taken ideally thin~one grid layer! and therefore, out of sym-
metry of the chosen configuration, there is no dipole mome
with this, the far field;1/r 6 dependence for a quadruple
obtained in a similar fashion as in Ref.@10#.

@10# The far field;1/r 2 dependence for a grounded conductor c
be obtained by minimizing the energy of the probe charge
the presence of the charged conductor,E5Q2/2C1qQ/z,
whereq is the probe charge,Q is the charge on the conducto
of capacitanceC, andz is their separation. The minimal energ
yields Q52qC/z, so that the potential onq is then qQ/z
52q2C/z2.
7-5


