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Potential landscapes and induced charges near metallic islands in three dimensions
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We calculate electrostatic potential landscapes for an external probe charge in the presence of a set of
metallic islands. Our numerical calculation in three dimensi(@Ry uses an efficient grid relaxation technique.
The well-known relaxation algorithm for solving the Poisson equation in two dimensions is generalized to 3D.
In addition, all charges on the system, free as well as induced charges, are determined accurately and self-
consistently to satisfy the desired boundary conditions. This allows the straightforward calculation of the
potential on the outer boundary using the free space electrostatic Green’s function, as well as the calculation of
the entire capacitance matrix of the system. Physically interesting examples of nanoscale systems are presented
and analyzed.
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[. INTRODUCTION environment (like metallic quantum dojs or for open
boundary problems. In the case of isolated islands, the value
There is a need to precisely know the electrostatic landof the potential at a metallic boundary, even though constant,
scape experienced by electrons in ever smaller structuret Not known. On the other hand, the overall charge on the
down to the scale of scanning tunnelling microprot&EM) island is determined at the outset and can be considered to be

and single electron devices. The presence of Conductingnown' The solution to Fhe proble'm tak_en here is that once
leads for manipulating and measuring local potentials influ- ne has access to the linear relationship between the charge

ences the quantum mechanical behavior of electrons in an the ism‘d and the isla_nd pote_ntial de_zrived_ from the relax-
highly nontrivial manner. In polarizable media, for example,at'on algor_lthml, one can invert .thIS relationship and calculate
charged “conglomerates” which include free as well as po—the p°te.”“a' W'th. every relgxanon cycle such that the overall
larization charges in the neighborhood, behave as quasipa?harge IS maintained at a.flxed va_lug, €.9., zero for an overall
ticles which can live for a comparatively long time and in- neutral |s_land. Incorporatpn of thls_ldea in thg iteration pro-

teract with the conducting leads via Coulomb interaction.C€dUre yields the appropriate floating potentials, as we will

Knowledge of the potential landscape describing this inter-Sh(l)\IW' hat th boundarv i . |
action for the case of a quasiparticle is an interesting and \Ot€ moreover that the outer boundary is open in genera

important element in the better understanding of these sys" most nanosized geometries. If the size of the calculated
tems. Electrons in single-electron transistdt§ or moving cell could be chosen'large enough, of course, on.e could as-
in the neighborhood of lithographically defined gate arrange-su_m?3 that the_ potential \.NOUId drop to zero there; howev_er,
ments[2], or tunnelling through STM scanning tips are but athIS is operationally forbidden by the vast number of grid

few examples of the pervasiveness of electrostatic potentiaf%c?Ints needed in that case. The only feasible way is to deter-
in realistic structures. mine the nonuniform potential on the outer boundary self-

The solution of the Laplace or Poisson equation to Obtair{:onsistently within the algorithm. The approach taken in this

electrostatic potential landscapes is a well defined bounda@@Per is that the knowledge of the total charge distribution
value problem, typically requiring the discretization of space externalar_wd induced chargesaliows for_the calculation of

on a convenient grid. Relaxation techniques are well kn0W|Jihe potential on the outer Poundary via the stz_andgrd free-
[3—5] and widely used in the solution of these problems, as’P3¢€ electrostr?ltlc Greeng function, &"4. This is a

they provide convenient and efficient algorithpég. For di- strglghtforward if computationally expensive p_rocedur_e,
mensions lower than three, simple second order algorithm\é’hICh can be speeded up r_emarkabl_y by tabulatlng the in-
are used together with common speedup features such %grse distances on ;he grid, but yields .phyS|caIIy well-
successive over-relaxatid®OR) and Gauss-SeidéGS) it- ehaved asymptotlcs in all cases, as we will see. We ShOUId
eration scheme&3,4]. In three dimensiong3D), however, also emphasize that once the charges and potentials in the

due to the poor scaling with grid dimensions, more efficientSYStem are known, one can easily evaluate the capacitance
routines are desirable. In this context a generali@4t®) matr!x for the geometries of interest, regardless of the sym-
algorithm for 3D is presented in this paper, and used to calmetries of th? arrangement. . . .
culate the potential landscape of several physical systems of The_ remainder O.f the paper descrlbe_s the al_gonthm n
interest, as those mentioned above. detal] in Sec. |, while Sec. Il illustrates its use in several
The boundary conditions most easily built into relaxationPhysically relevant examples.

algorithms are fixed voltage surfaces, with the voltage
known and provided by an external battery, for example.
This does not apply, however, to cases witfoating poten- Taking the standard Taylor expansion of a smooth func-
tial, such as metallic islands which are isolated from thetion f(x,y,z) around each grid point, one defines ttenter

Il. ALGORITHM
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(f) (f) where(g)c is the center averagdor the source termat a

c S given grid point. Equatiori6), together with Eq(4), serves

as the basis for the iterative scheme: the potehtgaielaxed

° to its minimumconsidering external sourcgsand the poten-

tial of the (third and nearest neighbor sites through the lin-
ear three-dimensional average. In order to calculate charges
on the grid, Eq(4) is employed again and gives a straight-
Sorward way for calculatingreal (i.e., free and induced
charges on the grid on an equal footing. Thus using Poisson’s
Eq. (5), the charge contribution of each grid point can be
calculated as follows

FIG. 1. Visualization of averages taken on the grid: averag
(f)c as in Eq.(1a) is over nearest neighbo(sIN); averagg/f)s as
in Eq. (1b) is over third nearest neighbofENN). The grid points
included in the sum are shown as filled symbols; solid lines joining
these have length of two grid spacing$y.2

=h3a.=h(—h2V2f )= Xnrf— 4
averageand thesquare averageas follows (assuming uni- Gi=h"gi=h(=h"V=f)=Zh[fi—(f)ao+O(hI]. (7

form grid spacingh in all three dimensions For convenience, throughout the paper we adopt the fol-
NN lowing convention on units. The charge of an electeas set
2 4 . ..
- 1 S g | =000, h—ﬁzf N h_ £(400); £(040) to 1; therefore the electric potential is the same as the poten-
(Fe= 6\ 5% 6 72 tial energy. The Coulomb energy is written in units of eV as

E=q4[e]a,[e]/(4wr) which straightforwardly implies a
+f(009) +0(h®), (1@  unit for the distance ofr]=18.1 nm. Summarizing, the

units chosen are
TNN ) 2 4

<f>SE%( E fii — £(000) . h?ﬁzf+ %(f(400)+f(040) [chargg=e; [energy=eV; [distancg=18.1 nm. (8)
i,j,k

Therefore, taking these units, brings one naturally into the

h4
+ £(004)) 4 Z(f(zzo)Jr £(2021 £(022) 1 O(h®), (1b) realm of nanostructures.

A. Successive over relaxation and iteration scheme

where(T)NN stands for(third) nearest neighbors and The general method for SOR is described for 2D in Refs.
[3,4] for aNXN array, and generalized here to 3D as given

;P
o= 2 i j k), (28
Ix= dy* dz FIFDZ 00 4 (Fnew £y, (9a)
fi=fi="1(i,j,k)=f(ih,jh,kh), (2 where
with i, j, k andr, s, t being integers. The averages in Egs. B 2 9b
(1) are shown graphically in Fig. 1. Note that the odd-order CTITF w/min(N,,Ny,N,)’ (9b)

derivatives in Egs(1) cancel due to the symmetric combi-

nations around the grid points included in the averages. Als; is the grid size in thgth direction, andf{"®" is calcu-
note thatsecondor nexd nearest neighbors are considered inlated according to Eq6). The SOR parametes is in the
the “checkered lattice” sweeps of the points making therange X< w<2 as required for the algorithm to converge.
simple cubic grid(The relaxation sweeps are done sequen-The basic idea behind is that if one is heading in theght
tially over the face-centered cubic array of neighbors whichdirection (e.g., towards the solutionwhy not go a bit fur-

form effectively a dual lattice. ther. An w too large @w>2), however, results in instability
Taking the linear combination of the averages of Egg)  of the algorithm and the relaxation process overshoots and
and(1b) diverges. Equatiof®b) was tested for differerftl,, N, , and
N, values and it was indeed this specific combination that
{(f)=a(f)c+(1—a)(f)s, (3) gave the optimal value fow (note that the window for a
good w is quite narrow in general The specific structure of
then with a= a3p=6/7 theoverall averagebecomes Eqg. (9b) can be intuitively understood as follows: the SOR

) o algorithm introduces perturbations in the system that propa-
{f Wap="Fi+ 5h?V2f+ &£h%V2V2f,+O(h®). (4  gate during the relaxation cycles and eventually die out if the
grid is large enough; however, for finite grid sizes, the per-

Since we are solving for the Poisson equation turbations are reflected at the boundaries and so they inter-
fere and pile up. In this sense, the minimum extension within
V2f= -0, (5) the three grid dimensions constrains the optimal magnitude
of w, consistent with Eq(9b).
Eq. (4) can be rewritten as For further optimization of the algorithm, the Gauss-
Seidel iteration scheme was adopted, as well as the alternat-
fi={f Hap+25h?(gi+{(g)c)+O(h®), (6) ing relaxation on the two checkerboard like subgrids that in
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sum span the whole gri3,4]. The inverse distances be- )
tween the grid points were mapped into a table, such that the 10
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isolated island

o grounded island
— oo-plane image charge
— fitta=-2

calculation of the potential in the grid is sped up remarkably.

According to Coalsoifi6], multigrid methods can be applied

to account for the slowly converging long wavelength por- 10

tions of the solution. This was not done here, since the varia-

tion of the potential on the isolated islands and especially the S

calculation of the outer boundary already introduced longer @ 10 |

range correlations over the grid that presumably made the— : .

algorithm converge faster in our case. T 4 -
A note about efficiency: As we use a successive over- —10

relaxation method to iterate the potential on the grid, the total

relaxation time for this in 2D is proportional ten®?, where "

n is the total number of grid point§4], and is thus clearly 10y

comparable to algorithms like conjugate gradient. Also note .

that SOR has still known improvements that may also be 8 . %o

implemented and would thus make this algorithm superior to 10" 102

the former[4]. Our relaxation over the bipartite lattices com- Z(h)

posing the simple cubic three-dimensional grid preserves the

spirit of the two-dimensional algorithms, but obtains an ac- FiG, 2. calculated interaction potential energy of a point charge
curacy ofO(h®), as discussed above. (g=1[e]) with a finite size conducting plane. The grid configura-

tion is shown to scale in the inset: the total block size is
32X 32X 132, indicated by the gray box lines; positions of the point

. . . . . charge are indicated by the black dots in the inset, a set of locations
Equation(7) gives a consistent higher order recipe fOrvertically away from the metallic plane which is shown at the bot-

calculating the overall charge distribution, int_:luding_ induced;,,, by the black lingnote that closest point charge to island dis-
as well as the externdfree) charges[7.8], given via the  (ance’is 3, three grid spacings Shown are two configurations:
source terng in the Poisson equatioff). Starting with an  neutral isolated islandfilled circles and grounded islangempty
(arbitrary) initial constant potential on the outer boundary circles. Gray lines indicate different power law dependencies.
(OB), these values are updated every time the interior of the

grid has relaxed down to a certain accuracy leyel of an induced quadrupole interaction potential1(r®) [9].

The calculation was done also for a grounded island. In
this case, one obtains the limit of an infinite plane at short
distances {1/r), while further away from the island the
dependence weakens tol/r? as expectedl10]. As a refer-
and employs the tabulated inverse distance values for thence, the interaction potential in the presence of an infinite
grid points. plane is showr(solid line in Fig. 2. The finite size of the
island clearly reduces the interaction at large distances. Over-
all, it is interesting to see that one obtains exactly what is

) o ) expected, but more importantly, the algorithm already gives
In the following, several applications of the algorithm are ,sefyl results for rather small grid dimensions.
presented. We start with a simple test example, and follow

with the analysis of more complex geometries.

0 b

B. Open outer boundary

1
Vitsan, quo a(d ;.

Ill. DISCUSSION

B. Example: Point charge interacting with an array of islands

Lithographically, an array of conducting islands can be
separated from a two-dimensional electron gas by an insulat-

As an instructive example and as a test case for the algang layer, as in the experiments with spatially modulated
rithm, a 32< 32X 132 grid was setup with one square metal-two-dimensional electron gases in semiconducf@fsCon-
lic island in the lower region, while an external charge issidering the electron gas as a Fermi liquid, the interaction of
placed at different positions away from the island surfaces single electrorfor single quasiparticlewith the conducting
and directly over its centefsee inset of Fig. 2 The total  islands nearby is an important element of the physics of this
dimensions of the grid in real space were taken toLQe problem since this interaction will clearly modify the dy-
=1 [in units as per Eq®)], and accordinght.y=1 andL,  namical behavior of the systefl]. Figure 3 shows the
=4.2 for equal grid spacing. sample geometry used in this example.

We calculate the interaction potential experienced by the With the test charge hovering over the center of one island
point charge in the presence of the island. The results arand considering the conducting islands either grounded or
shown in Fig. 2. For the case of a neutral island, close to th&olated (unchargeyl the calculated charge distribution and
surface, the potential approaches that produced by the imaglee potential in the plane of the islands are shown in Fig. 4;
charge of an infinite plane~1/r), while further away from the grounded case can be understood as that of an island
the island, the potential approaches asymptotically the formwvhere hopping onto and off the island is allowed via a tun-

A. Example: Point charge near a conducting island
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interaction potential of isolated islands interaction potential of grounded islands
s=10h s=10h
b)
w1 T e T
-0.1 -0.1
3-02 3-02
>-03 >'§—0‘3 ~
-0.4 ' -0.4
2 20 2 - 20 20
> 30 40 30 40
Y(h) 60 60 X(h) v (h;'O X (h) Y(h)""’ X (h)
FIG. 3. Interacting point chargeg& + 1) with an array of four
islands in a plane underneath the point charge: & &< 16 (box) €) s=3n d) s=eh
cell with open boundaries was setup; its dimensionslarel, 0 0
=1, L,=16h=0.25[units as per Eq(8)]. The separation of the -0 01
external charge from the island plane is-55/64=0.078. 3-02 3-02
>"03 >%03
neling channel from an external charge reservoir. A few -o4 2o 04 2
points should be stressed: first, note that the variations of the 20 5 30 20 55 30
L . . . 40 40 40 40
potential in the plane of islands in Fig. 4 for the case of Y () ) Y (h) R

isolated islands '_S about _a factor llzﬂggr ‘?Ompar_ed to the FIG. 5. Potential landscape of an external charge interacting
grounded case since the island potential is not fixed. Secongl the array of islands. The geometry is the same as in Fig. 3
the isolated islands are indeed neutrgl within ngmerlcal ACaxcept for the separation between islands. Only the region of the
curacy, the sum over all charg&d,, is zero, within the  four overlapping island corners is shown. The left two gragdis
accuracy provided by the convergence parametefsee and(c) are for the case of isolated islands; the right tiwpand (d)
lower two plots in Fig. 4: total induced charge in the plane offor grounded islands; the upper two graphs are for an island sepa-
the islands= all positive surface charge all negative sur- rations of 10h (=10 grid spacings), while the lower two graphs
face charge=0.442-0.442~10 "~¢). Third, the induced are for an island separation oh3

negative charge in the case of neutral islands is clearly

s:fnaller.com!oarﬁd to the lgroundid case, .Wh'cz IS 'ntu't'vdeIXhis charge separation in the island costs energy. Therefore,
g:ig;?gﬁsgé deb)r/]e;]tr:qSglszrrt]oir?tegfagggo(;i tzr%ﬁar:gg 2}] de interaction vyith the externall charge can be expected to be
' “weaker for the isolate¢heutra) islands, as is the cagsee

later, Fig. 5. Also note that in the neutral case the island
corners exhibit accumulation of induced charges, as one
would expect from the sharpness of the island corners. It is
also interesting to observe that the induced charge never ex-
ceeds the external chargm absolute valug at the maxi-
mum, it is just equal and opposite in si¢ms for the case of
the infinite plang

As the external charge was displaced horizontally at a
certain separation above the plane of the island, one effec-
Y(h) tively scans the potential landscapes for different geometries
and different boundary conditions, as shown in Fig. 5. The
isolated(neutra) islands show a clearly weaker modulation
of the interaction potential. Furthermore, decreasing the is-
land separation such that the gap between them is nearly
closed, reduces most of the central modulation and smooths
the potentials, as one would expect, and can be seen by com-
paring the upper two graphs in Fig. 5 with the lower two.

a) potential of isolated islands

N 0.4
O

-

E
>02

b) potential of grounded islands

0

40 20
X(h)

2

0 40 60 60
(h)

surface charge density
surface charge density

Y(h)

C. Mutually induced charge on STM tip

plane of islands for the geometry in Fig. 3: the lefight) two  fo the typical geometry of a metallic STM tip near a metal-

graphs are for the case of neuttgrounded islands, respectively. jic orray structure with the islands kept neutral: the geometry
Note the quite different scale in the two potentials shown in plots . . .
(a) and(b). The induced surface charge density is shown in the plot can be seen in panéd) of Fig. 6. The parabolically shaped

(c) and(d) [in units as per Eq(8)]; for better visualization the top SSTtM t"? IS maln:[re;:ned tat ? r')ée? p(::]enfﬂ?\/édl)_ by arl: d
(positive and bottom(negative surface charges of the islands are externai source. | he potential below the ISlands IS weakene

shown added up in a single plot and shielded by the islandlpanel(a)], while on the islands
' the potential is constant and is defined there by the constraint
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a) z=-4h b)  z=0h [panel(c)]. Panel(d) indicates the charge distribution on the

A A islands and on the tip; the charge on the tip is positive over-
! ! all: Qj,=+4.01 is the charge on the portion of the tip

S s shown in theabsenceof the islands, and it gains a bit more
Sos So0s5 of charge (+0.181) through the interaction with the metallic
g g islands. The island with the tip right on top of(ifght rear in
= = inse) is the most polarized of all. The corner in the center is
0 - o 20 negativelycharged, while the transition through the white
40 60" 60 L region on the island surfaces in parid) indicates that the
) ze25h y) d) surface charge switches sign there, and that the outer region

of the islands are positively charged. In addition, the lower
island surfaces are also mostly positive, as one would expect.
This compensates the negative charge induced by the tip and

% - guarantees the neutrality of the islandgee caption for ex-
5 ¥ plicit numbers.
8
0 IV. SUMMARY
20 40 60 40 40 60 . .
i x(h) iy x(h) In summary, the electrostatic potential of complex metal-

lic arrangements were calculated on a three-dimensional grid
with an O(h®) algorithm. The algorithm presented here is a
generalization of the relaxation techniques common in two-
Panelga)—(c) showxy slices in the potential distribution. Parie): d|m(-;-n3|onal sysFems, properly set up to provide accurate ar]d
potential just under the plane of islands=(— 4h with respect to efficient calcullauons. The approach a_llows the study of arbi-
the plane of the islandispanel (b): potential right on the plane of trary geometries and boundary Condltlons, as well as thg sglf-
islands ¢=0h); and panelc): potential on a plane above the tip Consistent calculation of free and induced charges. This in-
(z=25n). Panel(d) is a contour plot of the charge distribution on formation, in turn, allows the calculation of the capacitance
the tip and on the overall neutral island®!#}3"%s= +0.281+ matrix of the system. Several examples illustrate the reliabil-
(—0.281)=10"1 j.e., nicely converged The extracharge on the ity and usefulness of the algorithm for obtaining potential
tip due to the presence of the islands+i€.181. landscapes of interest.

FIG. 6. (Color online Potential and charge distribution for a
conducting tip at potentia¥/ =1 above four isolatedneutra) is-
lands; the distance between the plane of islands and the tip.is 5

of neutrality[panel(b)]. Above the islands, in the region of ACKNOWLEDGMENTS
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